811. Molecular Polarisability: the Dipole Moments, Polarisations, and Molar Kerr Constants of Ten Aliphatic Ketones as Solutes in Carbon Tetrachloride.

By M. Aroney, D. Izsak, and R. J. W. Le Fèvre.


#### Abstract

The properties named in the title are recorded for diethyl, di-n- and di-iso-propyl, di-n- and di-iso-butyl, di-n-pentyl, di-n- and di-iso-hexyl, di-nheptyl, and di-n-tridecyl ketone in carbon tetrachloride. The apparent conformations of diethyl and di-isopropyl ketone as solutes are inferred from the observed molar Kerr constants to be as in Figs. IG, and between IIA and IIB, respectively. The molar Kerr constants of the higher di-n-alkyl ketones can be satisfactorily forecast from data known for acetone and the related $n$-alkanes provided the polarisabilities of the attached alkyl groups are represented by ellipsoids of revolution whose long axes are situated at angles to the $\mathrm{C}=\mathrm{O}$ bond varying from $67^{\circ}$ in di-n-pentyl ketone to $63 \frac{1}{4}^{\circ}$ in di-n-tridecyl ketone.


The molar Kerr constants of the simpler aliphatic ketones as solutes at infinite dilution, $\infty\left({ }_{m} K_{2}\right)$, have not hitherto been recorded, except for acetone. ${ }^{1}$ From $\infty\left(m K_{2}\right)_{\text {acetone }}$, together with light-scattering data, ${ }^{2}$ Le Fèvre, Le Fèvre, and Rao ${ }^{3}$ deduced the longitudinal, transverse, and "vertical" polarisabilities ( $b_{\mathrm{L}}^{\mathrm{C}} \mathrm{C}, b_{\mathrm{T}}^{\mathrm{C}} \mathrm{O}$, and $b_{\mathrm{V}}^{\mathrm{C}}: \mathrm{O}$ respectively) of the $\mathrm{C}=\mathrm{O}$ bond as $0.230,0.140$, and 0.046 . (Throughout this paper, polarisabilities will be quoted in $10^{-23}$ c.c.) Observations in ref. 3, and others (unpublished) now accumulating, suggest that these values are of general applicability to structures in which the ketone group is "isolated" (i.e., non-conjugated); accordingly they will be adopted in the analysis of the new $\infty\left({ }_{m} K_{2}\right)$ measurements reported in Tables 1 and 2. For none of the

## Table 1. Incremental Kerr effects, refractive indexes, dielectric constants, and densities for solutions in carbon tetrachloride at $25^{\circ}$.

Solute: Diethyl ketone

| $10^{5} w_{2}$ | 290 | 376 | 641 | 785 | 1222 | 1256 | 3085 | 3369 | 4670 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ | - | - | $0 \cdot 047$ | 0.054 | 0.091 | 0.098 | 0.225 | $0 \cdot 247$ | 0.344 |
| $-10^{ \pm} \Delta n \ldots$ | - | - |  |  |  |  | 37 | 40 | 57 |
| $\varepsilon^{25}$ | 2-2784 | $2 \cdot 2916$ | $2 \cdot 3394$ | $2 \cdot 3637$ | $2 \cdot 4410$ | $2 \cdot 4465$ |  |  |  |
| $d_{4}^{25} \ldots$ | 1.57999 | 1.57899 | 1.57483 | 1.57275 | 1.56612 | 1.56564 | 1.53918 | 1.53512 | 1.51694 | whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=7.35 ; \sum \Delta n / \sum w_{2}=-0.120 ; \Sigma \Delta \varepsilon / \sum w_{2}=17.5 ; \Sigma \Delta d / \sum w_{2}=-1.50$

Solute: Di-n-propyl ketone

| $10^{5} w_{2}$ | 859 | 929 | 1253 | 1392 | 1648 | 1757 | 2528 | 3006 | 3858 | 5255 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ |  |  |  | 0.047 | 0.057 | 0.061 |  | $0 \cdot 106$ | $0 \cdot 142$ | $0 \cdot 187$ |
| $-10^{4} \Delta n$ |  |  |  |  | 17 |  |  |  | 39 | 51 |
| $\varepsilon^{25}$ | $2 \cdot 3286$ | $2 \cdot 3377$ | $2 \cdot 3765$ | $2 \cdot 3933$ |  | $2 \cdot 4357$ | $2 \cdot 5255$ | $2 \cdot 5863$ |  |  |
| $d_{4}^{25}$ |  | 1.57094 | 1.56578 | 1.56421 | 1.5601 |  |  | 1.54094 | 1.52874 | 1.51031 |
| whence $\sum 10^{7} \Delta B / \sum w_{2}=3.51 ; \sum \Delta n / \sum w_{2}=-0.100 ; \sum \Delta \varepsilon / \sum w_{2}=11.9 ; \sum \Delta d / \sum w_{2}=-1.46$ |  |  |  |  |  |  |  |  |  |  |


| $10^{5} w_{2}$ | 477 | 957 | 1005 | 1162 | 1941 | 2115 | 3683 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ |  | 0.029 | 0.030 | 0.035 | 0.059 | 0.066 | $0 \cdot 118$ |
| $-10^{4} \Delta n$ |  |  |  |  | 21 | 24 | 41 |
| $\varepsilon^{25}$. | 2.2896 | $2 \cdot 3524$ | 2.3594 | 2.3785 | 2.4855 | 2.5092 |  |
| $d_{4}^{25}$ | 1.57724 | 1.56996 | 1.56926 | 1.56690 | 1.55510 | 1.55264 | 1.52995 |
| whence $\sum 10^{7} \Delta B / \sum w_{2}=3.07 ; \sum \Delta n / \sum w_{2}=-0.111 ; \sum \Delta \varepsilon / \sum w_{2}=13.2 ; \sum \Delta d / \sum w_{2}=-1.51$ |  |  |  |  |  |  |  |

[^0]Table 1. (Continued).
Solute: Di-n-butyl ketone

| $10^{5}{ }^{\prime}$ | 676 | 1102 | 1824 | 2951 | 3809 | 5038 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B \ldots \ldots$. | 0.014 | 0.024 | 0.042 | 0.068 | 0.085 | $0 \cdot 113$ |
| $-10^{4} \Delta n$ |  |  |  | 21 | 27 | 36 |
| $\varepsilon^{25} \ldots \ldots \ldots$ | $2 \cdot 2912$ | 2.3311 | - | 2.5071 | 2.5922 | 2.7091 |
| $d_{4}^{25} \quad \ldots \ldots .$. | 1.57457 | 1.56826 | 1.55781 | 1.54206 | 1.52926 | 1-51241 |
| whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=2.22 ; ~ \Sigma \Delta n / \Sigma w_{2}=-0.071 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=9.52 ; \Sigma \Delta d / \Sigma w_{2}=-1.46$ |  |  |  |  |  |  |
| Solute: Di-isobutyl ketone |  |  |  |  |  |  |
| $10^{5} w_{2} \ldots \ldots$ | 913 | 929 | 2009 | 2262 | 2500 | 34.32 |
| $10^{7} \Delta B$ | 0.018 | 0.019 | 0.038 | 0.043 | 0.048 | 0.064 |
| $-10^{4} \Delta n$ |  |  |  | 21 | 24 | 33 |
| $\varepsilon^{2,}$ | $2 \cdot 3109$ | $2 \cdot 3127$ | 2.4128 | 2.4364 | 2.4586 | 2.5471 |
| $d_{4}^{25} \quad \ldots \ldots \ldots$ | 1.57043 | 1-57028 | 1.55385 | 1.55012 | $1 \cdot 54663$ | 1-53281 | whence $\sum 10^{7} \Delta B / \sum w_{2}=1.93 ; \sum \Delta n / \sum w_{2}=-0.095 ; ~ \sum \Delta \varepsilon / \sum w_{2}=9.25 ; \sum \Delta d / \sum w_{2}=-1.53$

Solute: Di-n-pentyl ketone

| $10^{5} w_{2}$ | 800 | 1308 | 1720 | 2117 | 2774 | 3254 | 3724 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ |  | 0.023 | 0.032 | 0.039 | 0.050 | 0.056 | 0.067 |
| $\varepsilon^{25}$ | $2 \cdot 2901$ | $2 \cdot 3307$ |  | $2 \cdot 3942$ | 2.4466 | 2.4839 | 2.5211 |
| $d_{4}^{25}$ | 1.57289 | 1.56553 | 1.55937 | 1.55368 | 1.54432 |  | 1.53034 |
|  | whence $\sum 10^{7} \Delta B / \sum w_{2}=1.80 ; ~ \sum \Delta \varepsilon / \sum w_{2}=7.91 ; ~ \Sigma \Delta d / \sum w_{2}=-1.46$ |  |  |  |  |  |  |
| $\begin{aligned} & 10^{5} w_{2} . \\ & -10^{4} \Delta n \end{aligned}$ | $\begin{array}{r} 1494 \\ 8 \end{array}$ | $\begin{array}{r} 2156 \\ 11 \end{array}$ | $\begin{array}{r} 2924 \\ 16 \end{array}$ |  | ence $\Sigma$ | $w_{2}=$ |  |


|  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| $10^{5} w_{2}$ | $\ldots .$. | 897 | 997 | 1454 | 1722 | 2468 |
| $10^{7} \Delta B$ | $\ldots \ldots$. | 0.012 | 0.013 | 0.019 | 0.021 | 0.032 |
| $-10^{4} \Delta n$ | $\ldots$ | - | - | - | 8 | 0.037 |

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=1.29 ; \Sigma \Delta n / \Sigma w_{2}=-0.045$

| $10^{5} w_{2}$ | 705 | 940 | 955 | 1080 | 1275 | 2153 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon^{20}$. | $2 \cdot 2727$ | 2.2878 | 2.2890 | $2 \cdot 2966$ | $2 \cdot 3096$ | $2 \cdot 3651$ |  |
|  |  |  | whence | $w_{2}$ |  |  |  |
| $10^{5} w_{2}$ | 720 | 790 | 897 | 997 | 1454 | 1722 | 2915 |
| $d_{4}^{12,}$ | 1.57389 | 1.57291 | 1-57156 | 1.57001 | 1.56346 | 1.55958 | 1.54255 |

whence $\Sigma \Delta d / \Sigma w_{2}=-\mathbf{l} \cdot \mathbf{4 6}$
Solute: Di-isohexyl ketone

| $10^{5} w_{2}$ | 828 | 1464 | 1650 | 2012 | 2221 | 2344 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ | 0.010 | 0.015 | 0.018 | 0.023 | 0.025 | 0.026 |
| $-10^{4} \Delta n$ |  |  |  | 12 | 13 | 14 |
| $\varepsilon^{25}$ | $2 \cdot 2794$ | $2 \cdot 3191$ | $2 \cdot 3298$ | $2 \cdot 3536$ | $2 \cdot 3663$ | $2 \cdot 3754$ |
| $d_{4}^{25}$ | 1.57232 | 1.56317 | 1.56035 | 1.55522 | 1.55237 | 1.55043 |
| whence $\Sigma 10^{7} \Delta B / \sum w_{2}=1.12 ; \sum \Delta n / \sum w_{2}=-0.060 ; ~ \sum \Delta \varepsilon / \sum w_{2}=6.29 ; ~ \Sigma \Delta d / \Sigma w_{2}=-1.46$ |  |  |  |  |  |  |

Solute: Di-n-heptyl ketone

| $10^{5} w_{2}$ | 236 | 846 | 1292 | 1368 | 1862 | 2354 | 2809 | 4099 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ |  |  | 0.011 | 0.012 | 0.016 | 0.020 | 0.024 | 0.035 |
| $-10^{4} \Delta n$ |  |  |  |  |  | 9 | 11 | 15 |
| $\varepsilon^{25}$ | - | 2.2792 | $2 \cdot 3057$ | 2.3119 | $2 \cdot 3432$ | $2 \cdot 3715$ | $2 \cdot 4032$ |  |
| $d_{4}^{25}$ | 1.58108 | 1.57227 | 1.56601 | 1.56452 | 1.55732 | 1.55050 | 1.54308 |  |
| whence $\Sigma 10^{7} \Delta B / \sum w_{2}=0.858 ; \sum \Delta n / \sum w_{2}=-0.038 ; \sum \Delta \varepsilon / \sum w_{2}=6.19 ; \sum \Delta d / \sum w_{2}=-1.46$ |  |  |  |  |  |  |  |  |

Solute: Di-n-tridecyl ketone

| $10^{5} w_{2}$ | $\ldots .$. | 1121 | 1144 | 1581 | 1649 | 1675 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{7} \Delta B$ | $\ldots .$. | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 |
| $-10^{4} \Delta n$ | $\ldots$ | - | - | 3 | 3 | - |

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=0.277 ; \Sigma \Delta n / \Sigma w_{2}=-0.018$

| $10^{5} w_{2}$ | 468 | 706 | 839 | 1101 | 1121 | 1347 | 1639 | 1675 | 1715 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon^{25}$ |  | 2.2446 | 2.2478 | $2 \cdot 2546$ | $2 \cdot 2550$ | $2 \cdot 2618$ | $2 \cdot 2690$ |  | $2 \cdot 2713$ |
| $d_{4}^{25}$ | 1.57782 | 1.57485 | $1 \cdot 57250$ | $1 \cdot 56961$ | 1-56876 | $1 \cdot 56564$ |  | 1.56159 |  | whence $\Sigma \Delta \varepsilon / \sum w_{2}=2.53 ; \quad \Sigma \Delta d / \Sigma w_{2}=-1.40$

ten ketones here examined, has any evidence indicating conformation been previously advanced, apart from one reference to diethyl and di-isopropyl ketones. ${ }^{4,5}$

Table 2. Polarisations, dipole moments, and molar Kerr constants (from observations on solutions in carbon tetrachloride at $25^{\circ}$ ).

| Solute | $\alpha \varepsilon_{1}$ | $-\beta$ | $-\gamma$ | $\delta$ | $\begin{gathered} \infty P_{2} \\ (\text { c.c. }) \end{gathered}$ | $\begin{gathered} \mathbf{D}^{P} \\ (\mathrm{c} . \mathrm{c} .)^{a} \end{gathered}$ | $\mu$ (D) | $10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CO} \ldots \ldots$. | $17 \cdot 5$ | 0.947 | 0.082 | 105 | $190 \cdot 2$ | 26.8 | 2.82 | 63.7 |
| $\left(\mathrm{n}^{\left.-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{CO} \ldots}\right.$ | 11.9 | 0.921 | 0.069 | $50 \cdot 1$ | 183.9 | $35 \cdot 7$ | $2 \cdot 70$ | $39 \cdot 8$ |
| (iso-C $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{CO} \ldots$ | $13 \cdot 2$ | 0.955 | 0.076 | $43 \cdot 9$ | $200 \cdot 4$ | $36 \cdot 2$ | $2 \cdot 83$ | $33 \cdot 9$ |
| $\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{8}\right)_{2} \mathrm{CO} \ldots$ | $9 \cdot 52$ | 0.921 | 0.049 | 31.7 | 193.5 | $45 \cdot 9$ | $2 \cdot 69$ | 31.1 |
| (iso- $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{CO} \ldots$ | 9.25 | 0.963 | 0.065 | $27 \cdot 6$ | $190 \cdot 6$ | $45 \cdot 8$ | $2 \cdot 66$ | 26.9 |
| $\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{CO} \ldots$ | 7.91 | 0.921 | 0.036 | $25 \cdot 7$ | 202.5 | $55 \cdot 9$ | $2 \cdot 68$ | $30 \cdot 5$ |
| $\left(\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right)_{2} \mathrm{CO}$. | $6 \cdot 46$ | 0.921 | 0.031 | $18 \cdot 4$ | $205 \cdot 6$ | $65 \cdot 7$ | $2 \cdot 61$ | $25 \cdot 7$ |
| (iso- $\left.\mathrm{C}_{6} \mathrm{H}_{13}\right)_{2} \mathrm{CO}$ | $6 \cdot 29$ | 0.921 | 0.041 | $16 \cdot 0$ | $202 \cdot 0$ | $64 \cdot 8$ | $2 \cdot 59$ | $22 \cdot 3$ |
| $\left(\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{15}\right)_{2} \mathrm{CO} \ldots$ | $6 \cdot 19$ | 0.921 | 0.026 | 12.3 | 228.2 | $75 \cdot 9$ | 2.73 | $19 \cdot 1$ |
| $\left(\mathrm{n}-\mathrm{C}_{13} \mathrm{H}_{27}\right)_{2} \mathrm{CO} \ldots$ | $2 \cdot 53$ | $0 \cdot 884$ | 0.012 | $3 \cdot 96$ | $242 \cdot 0$ | 131.8 | $2 \cdot 32$ | $13 \cdot 8$ |
|  |  |  |  | $1.05 R$ |  |  |  |  |

## Experimental

Materials, Apparatus, etc.-The solutes were purified immediately before use, giving the following ketones: diethyl, b. p. $101-102^{\circ}$, after drying $\left(\mathrm{MgSO}_{4}\right)$ of the B.D.H. product; di-n-propyl, b. p. $143^{\circ}$; di-n-butyl, b. p. $185-187^{\circ}$; di-n-pentyl, b. p. $222^{\circ}$; di-n-hexyl, b. p. $264^{\circ}$; di-n-heptyl, b. p. $278^{\circ}$; di-n-tridecyl, m. p. $76^{\circ}$ (Found: C, 82.2 ; H, 13.8. Calc. for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}: \mathrm{C}, \mathbf{8 2} \cdot \mathrm{l5}$; H, 13.8\%); di-isopropyl, b. p. 124-126 ${ }^{\circ}$; di-isobutyl, b. p. $164-166^{\circ}$; di-isohexyl, b. p. $152^{\circ} / 92 \mathrm{~mm}$. Carbon tetrachloride was from a sulphur-free supply which had been dried $\left(\mathrm{CaCl}_{2}\right)$, fractionated through a $1-\mathrm{m}$. column packed with glass helices, then stored with fresh anhydrous calcium chloride. Solutions, containing weight fractions $w_{2}$ of solutes, were made up from filtered carbon tetrachloride. Apparatus for the measurement of the dielectric ${ }^{6}(\varepsilon)$ and Kerr ${ }^{7}$ constants $(B)$ of the solutions has been described before. $\mathrm{Ob}-$ servations are set out in Table 1, in which $\Delta$ implies the difference between solution and solvent, e.g., $\Delta B=B_{12}-B_{1}, \Delta n=n_{12}-n_{1}$ (refractive-index change), etc. (Subscripts 1, 2, and 12 denote solvent, solute, and solution, in that order.) Calculations relevant to Table 2 are explained in refs. 1, 7, 8, 9. For carbon tetrachloride at $25^{\circ}, \varepsilon_{1}=2 \cdot 2270, d_{1}=1 \cdot 58454,\left(n_{\mathrm{D}}\right)_{1}=$ $1 \cdot 4575$, and $B_{1}=0.070 \times 10^{-7}(\mathrm{Na}$ light $)$.

## Discussion

Dipole Moments.-Wesson's list ${ }^{10}$ contains no entry for any of these ketones in carbon tetrachloride; acetone in this solvent has ${ }^{11} \mu=2.74 \mathrm{D}$. Diethyl and di-n- and di-isopropyl ketone as solutes in benzene have ${ }^{10} \mu=2.72,2.73$, and 2.74 D , respectively; the new values in Table 2 are evidently unremarkable (cf. Smyth ${ }^{12}$ ).

Molar Kerr Constants.-No previous determinations of $\infty\left({ }_{m} K_{2}\right)$ 's for the ketones of Table 2 exist. An initially rapid, and subsequently more gradual, diminution of molar Kerr constant occurs as the n-alkyl chains are lengthened from acetone, ${ }^{1} \infty\left({ }_{m} K_{2}\right)=$ $101 \times 10^{-12}$, to di-n-tridecyl ketone, $\infty\left({ }_{m} K_{2}\right)=13.8 \times 10^{-12}$. None of the values is algebraically negative-a fact of interest because Stuart and Volkmann, ${ }^{4}$ who recorded

[^1]the electric birefringences of, inter alia, gaseous diethyl and di-isopropyl ketone at temperatures considerably higher than that used here, give data which, transformed to $25^{\circ}$, correspond to molar Kerr constants of $25.0 \times 10^{-12}$ and $-13.6 \times 10^{-12}$ respectively. These are strikingly different from the $\infty\left({ }_{m} K_{2}\right)$ 's now found (Table 2) at infinite dilution, being 39 and 48 units less positive; a similar calculation for acetone from ref. 4, however, yields an ${ }_{\mathrm{m}} K$ at $25^{\circ}$ of $153 \times 10^{-12}$, which is 52 units more positive than the observed ${ }^{\mathbf{1}}$ ${ }_{\infty}\left({ }_{(\mathrm{m}} K_{2}\right)$ of $101 \times 10^{-12}$. Such disagreements seem too great to be due to alterations of molecular conformations by temperature or state; probably their causes lie in practical difficulties in the measurement of Kerr effects with hot vapours.

Conformation of Diethyl Ketone.-Le Fèvre and Rao, ${ }^{2}$ from data on solutions in carbon tetrachloride, gave the principal polarisabilities of acetone as $b_{1}=0.701, b_{2}=0.684$, and $b_{3}=0.482$, where $b_{1}$ is measured parallel to the $\mathrm{C}=\mathrm{O}$ axis, $b_{2}$ is perpendicular to $b_{1}$ and in the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ plane, and $b_{3}$ is normal to this plane. Subtraction of two $\mathrm{C}-\mathrm{H}$ bond polarisabilities ( $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}=0.064$ ) provides principal polarisabilities for the $\left(-\mathrm{CH}_{2}\right)_{2} \mathrm{CO}$ unit; from this, in conjunction with longitudinal, transverse, and vertical polarisabilities for the $\mathrm{C}-\mathrm{C}$ link of $0.098_{6}, 0.027_{4}$, and $0.027_{4}$, respectively, together with $120^{\circ}$ for the $\mathrm{C}-(\mathrm{CO})-\mathrm{C}$ angle and $109^{\circ} 28^{\prime}$ for all other $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles, the results summarised in Table 3 have been calculated by the method outlined in ref. 7, p. 2486. The X axis

## Table 3. Calculated polarisabilities and molar Kerr constants for seven conformations of diethyl ketone.

| Conformation | Direction cosines with |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $b_{i}$ (calc.) | X | Y | Z | $10^{12}{ }_{\mathrm{m}} \mathrm{K}$ (calc.) |
| IA | $\left\{\begin{array}{l}b_{1}=1.071 \\ b_{2}=1.078 \\ b_{3}=0.793\end{array}\right.$ | +1 0 0 | 0 +1 0 | 0 0 +1 | 123 |
| IB | $\left\{\begin{array}{l}b_{1}=1.150 \\ b_{2}=0.999 \\ b_{3}=0.793\end{array}\right.$ | 1 +1 0 0 | 0 +1 0 | 0 0 +1 | 228 |
| IC | $\left\{\begin{array}{l}b_{1}=1.117 \\ b_{2}=1.032 \\ b_{3}=0.793\end{array}\right.$ | $\begin{aligned} & +0.959 \\ & +0.283 \\ & 0 \end{aligned}$ | $\begin{gathered} -0.283 \\ +0.989 \\ 0 \end{gathered}$ | 0 0 +1 | 175 |
| ID | $\left\{\begin{array}{l}b_{1}=1.021 \\ b_{2}=1.007 \\ b_{3}=0.913\end{array}\right.$ | $\begin{gathered} +0.976 \\ 0 \\ +0.218 \end{gathered}$ | 0 +1 0 | $\begin{gathered} -0.218 \\ 0 \\ +0.976 \end{gathered}$ | 47 |
| IE | $\left\{\begin{array}{l}b_{1}=1.016 \\ b_{2}=1.022 \\ b_{3}=0.903\end{array}\right.$ | $\begin{array}{r} +1 \\ 0 \\ 0 \end{array}$ | $\begin{gathered} 0 \\ +0.934 \\ -0.356 \end{gathered}$ | $\begin{gathered} 0 \\ +0.356 \\ +0.934 \end{gathered}$ | 48 |
| IF | $\left\{\begin{array}{l}b_{1}=1.059 \\ b_{2}=0.996 \\ b_{3}=0.887\end{array}\right.$ | $\begin{array}{r} +1 \\ 0 \\ 0 \end{array}$ | $\begin{gathered} 0 \\ +0.998 \\ -0.066 \end{gathered}$ | $\begin{gathered} 0 \\ +0.066 \\ +0.998 \end{gathered}$ | 104 |
| IG | $\left\{\begin{array}{l}b_{1}=1.026 \\ b_{2}=1.010 \\ b_{3}=0.906\end{array}\right.$ | +1 0 0 | 0 +0.959 -0.285 | 0 + + + + +0.2859 | 60 |

is chosen to be always along the $\mathrm{C}=\mathrm{O}$ group, Z to be perpendicular to, and Y to be in, the plane of the paper in diagrams (IA) to (IG). The locations of the principal polarisability directions within the XYZ co-ordinates are defined by the cosines listed.

Conformations IA, B, and C are planar and as shown in the diagrams; in D the $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ triangles are in planes perpendicular to the $\mathrm{CH}_{2} \cdot \mathrm{C}^{\cdot} \cdot \mathrm{CH}_{2}$ plane and both methyl groups project up above the latter plane; E is the same as D except that one of the methyl groups (that for which the $\mathrm{C}-\mathrm{Me}$ bond is indicated by the letter n ) projects below the $\mathrm{CH}_{2} \cdot \mathrm{C} \cdot \mathrm{CH}_{2}$ plane; in F the $\mathrm{C}=\mathrm{O}$ " eclipses" one of the $\mathrm{C}-\mathrm{H}$ links in each of the methylene groups, i.e., one $\mathrm{C}-\mathrm{H}$ of each methylene group, and the carbonyl link are in the same plane; for G each $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ group of configuration E is rotated inwards about the $\mathrm{C}-\mathrm{CH}_{2}$ bonds, i.e., away from the positive X direction, by $10^{\circ}$ from the positions in E .

The observed value of the molar Kerr constant is $63.7 \times 10^{-12}$, which is much below that calculated for any planar conformation. In E (which sterically is preferable to D ) the terminal $\mathrm{C}-\mathrm{CH}_{3}$ groups are out of the $\mathrm{CH}_{2} \cdot \mathrm{C} \cdot \mathrm{CH}_{2}$ plane to the maximum extent and


B

C


F

G
(I)
for this the calculated ${ }_{\mathrm{m}} K$ is too small. Best agreement is obtained with the intermediate conformation G .

Conformation of Di-isopropyl Ketone.-Only two conformations of this molecule appear, from Leybold models, to be sterically allowable, namely IIA and B. In IIA the two $\mathrm{C}-\mathrm{H}$ bonds are coplanar with the $\mathrm{C}=\mathrm{O}$ and are located as shown in the diagram; in IIB, the two $\mathrm{C}-\mathrm{H}$ bonds are also coplanar with $\mathrm{C}=\mathrm{O}$ but one isopropyl group has been rotated



A


B
(II)
through $180^{\circ}$ about *C-C from its position in A. Molecular polarisability semiaxes have been computed for the two configurations and, by taking the observed dipole moment as acting along the carbonyl bond axis, the corresponding molar Kerr constants have been estimated.

Table 4. Calculated polarisabilities and molar Kerr constants for two conformations of di-isopropyl ketone.

| Conformation | Direction cosines with |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $b_{\text {i }}$ (calc.) | x | Y | Z | $10^{12}{ }_{\mathrm{m}} K$ (calc.) |
| IIA | $b_{1}=1.339$ $b_{2}=1.386$ $b_{3}=1.292$ | +1 0 0 | 0 +1 0 | 0 0 +1 | 0.3 |
| IIB | $b_{1}=1.390$ $b_{2}=1.334$ $b_{3}=1.292$ | $\begin{gathered} +0.886 \\ { }_{-0.464} \\ 0 \end{gathered}$ | $\begin{gathered} +0.464 \\ +0.886 \\ +0 \end{gathered}$ | 0 0 +1 | 52 |

The observed value for the molar Kerr constant is $33.9 \times 10^{-12}$. A mixture of the two forms in the ratio $2(\mathrm{~B}): 1(\mathrm{~A})$ would give a resultant ${ }_{\mathrm{m}} K$ of $c a .35 \times 10^{-12}$ in agreement with that from experiment.

Conformations of Higher Di-n-alkyl Ketones.-From the values of $B_{\text {liq }}$ at $20^{\circ}$ listed on p. 460 of ref. 5, together with appropriate dielectric constants, densities, and refractive indexes from refs. 13 and 14, molar Kerr constants and anisotropy terms are calculable for the following hydrocarbons as liquids:

|  | $10^{7} B_{119}$ | $\varepsilon$ | $d$ | $n_{D}$ | $10^{12}{ }_{\mathrm{m}} K_{\text {Liq }}$ | $10^{35} \theta_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n -Pentane | $0 \cdot 055$ | 1.844 | $0 \cdot 6263$ | 1.3577 | 1.39 | $0 \cdot 330{ }_{6}$ |
| n -Hexane | 0.066 | 1.890 | $0 \cdot 6595$ | 1.375 | 1.70 | $0 \cdot 4043$ |
| n -Heptane | 0.076 | 1.924 | $0 \cdot 6837$ | 1.3878 | $2 \cdot 14$ | $0 \cdot 509{ }_{0}$ |
| n-Dodecane | $0 \cdot 125$ | 2.014 | $0 \cdot 7488$ | $1 \cdot 4215$ | $5 \cdot 08$ | 1.208 |

By assuming that because of their flexibility these molecules will show anisotropies of polarisability describable by an ellipsoid of rotation, i.e., with $b_{1} \neq b_{2}=b_{3}$, the following may be deduced by subtracting from $b_{1}$ and $b_{2}$ the polarisability known for the $\mathrm{C}-\mathrm{H}$ bond:

| $\left(b_{1}+b_{2}+b_{3}\right)^{*} b_{\mathrm{L}}{ }^{\text {alkyl }}\left(b_{\mathrm{T}}=b_{\mathrm{V}}\right)^{\text {alkyl }}$ |  |  |  |  | $b_{2}+$ | $b_{\text {L }}{ }^{\text {alkyl }}$ | $\left(b_{\mathbf{T}}=b_{\mathbf{V}}\right)^{\text {alky } \mathbf{l}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n -Pentane | 2.916 | 1.019 | 0.852 | n -Heptane | $3 \cdot 990$ | $1 \cdot 404$ | $1 \cdot 197$ |
| n-Hexane | $3 \cdot 453$ | $1 \cdot 210$ | $1 \cdot 026$ | n-Dodecane | $6 \cdot 675$ | $2 \cdot 374$ | $2 \cdot 055$ |

* Calc. from $b_{\mathrm{L}}+b_{\mathrm{T}}+b_{\mathrm{V}}=0.153$ for the $\mathrm{C}-\mathrm{C}$ bond, and 0.192 for the $\mathrm{C}-\mathrm{H}$ bond.

These data can now be combined with the three polarisabilities, deriv ed from acetone for the $\mathrm{C}-\mathrm{CO}-\mathrm{C}$ unit. Suppose the alkyl groups to be attached so that their longitudinal polarisability axes lie in the $\mathrm{C}-\mathrm{CO}-\mathrm{C}$ plane and make angles $180^{\circ}-\alpha^{\circ}$ with the $\mathrm{C}=\mathrm{O}$ bond (i.e., with the direction of action of $\mu_{\text {resultant }}$, along which also the $b_{1}$ 's of the higher ketones are measured); the principal polarisabilities, and hence the ${ }_{\mathrm{m}} K$ 's which emerge are sensitively dependent on $\alpha$. Values of $\alpha$ which lead to ${ }_{m} K$ 's close to those observed are shown:

| Ketone | $\alpha$ | $b_{1}$ | $b_{2}$ | $b_{3}$ | $10^{12}{ }_{\mathrm{m}} K$ (calc.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{CO}$ | 67 | $2 \cdot 072$ | 2.287 | 1.802 | $30 \cdot 7$ |
| $\left(\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right)_{2} \mathrm{CO}$ | 66.5 | 2.428 | 2.661 | $2 \cdot 150$ | 26.7 |
| $\left(\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{15}\right)_{2} \mathrm{CO}$ | $66 \cdot 5$ | $2 \cdot 777$ | 3.042 | $2 \cdot 492$ | $19 \cdot 6$ |
| $\left(\mathrm{n}-\mathrm{C}_{12} \mathrm{H}_{25}\right)_{2} \mathrm{CO}$ | $63 \cdot 2_{5}$ | 4.556 | 4.919 | $4 \cdot 208$ | $14 \cdot 5$ |

An interesting implication is therefore that the larger the $n$-alkyl group the more does its maximum polarisability tend towards operation at trigonal angles to the $\mathrm{C}=\mathrm{O}$ bond (for which limiting situation $\alpha$ should of course be $60^{\circ}$ ).

University of Sydney, N.S.W., Australia.
[Received, March 13th, 1961.]
13 Timmermans, " Physico-chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.
${ }^{14}$ Maryott and Smith, " Table of Dielectric Constants of Pure Liquids," Nat. Bur. of Stds. Circular 514, Washington, issued Aug. 10th, 1951.


[^0]:    ${ }^{1}$ Le Fèvre and Le Fèvre, $J ., 1953,4041$.
    ${ }^{2}$ Le Fèvre and Rao, J., 1957, 3644.
    ${ }^{3}$ Le Fèvre, Le Fèvre, and Rao, $J$., 1959, 2340.

[^1]:    4 Stuart and Volkmann, Ann. Physik, 1933, 18, 121.
    ${ }^{5}$ Stuart, " Die Struktur des Freien Molekuls," Springer Verlag, Berlin, 1952, pp. 456-458.
    ${ }^{6}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
    " Le Fèvre and Le Fèvre, Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn. Vol. I, p. 2459.
    ${ }^{8}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
    ${ }^{9}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
    10 Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.
    ${ }_{11}$ Le Fèvre and Le Fèvre, Austral. J. Chem., 1954, 7, 33.
    12 Smyth, " Dielectric Behavior and Structure," McGraw-Hill, New York, 1955, p. 290.

